No announcement yet.

Sat and Anti-Sat ~ 'Star Wars'

  • Filter
  • Time
  • Show
Clear All
new posts

  • G David Bock
    Pending a separate thread of focus, placing here since deals with thwarting/deflecting usefulness of a satellite system;
    How Vulnerable Is G.P.S.?

    An engineering professor has proved—and exploited—its vulnerabilities.
    The proliferation of G.P.S. interference is a major reckoning for the country’s military and defense systems.

    In the cool, dark hours after midnight on June 20, 2012, Todd Humphreys made the final preparations for his attack on the Global Positioning System. He stood alone in the middle of White Sands Missile Range, in southern New Mexico, sixty miles north of Juárez. All around him were the glowing gypsum dunes of the Chihuahuan Desert. In the distance, the snow-capped San Andres Mountains loomed.

    On a hill about a kilometre away, his team was gathered around a flat metal box the size of a carry-on suitcase. The electronic machinery inside the box was called a spoofer—a weapon by another name. Soon, a Hornet Mini, a drone-operated helicopter popular with law-enforcement and rescue agencies, was scheduled to appear forty feet above them. Then the spoofer would be put to the test.

    Humphreys, an engineering professor at the University of Texas at Austin, had been working on this spoofing technology for years, but he was nervous. Witnessing the test that morning was a group of about fifteen officials from the Federal Aviation Administration, the Department of Homeland Security, and the Air Force’s 746th Test Squadron. They were Humphreys’s hosts, but they very much wanted him to fail. His success would mean a major reckoning for the entire G.P.S. system—and, in turn, for the effectiveness of some of the country’s principal military and defense systems. Drones, which rely on G.P.S. to navigate, are an increasingly indispensable part of our security apparatus. Demand for them is growing elsewhere, too. There are now over a million more recreational drones in the sky than there were just four years ago. Sales of high-precision commercial-grade drones—for everything from pipeline inspections to 3-D mapping—increased more than five hundred per cent during the same period.

    When D.H.S. had first contacted Humphreys a few months earlier, the department was worried about one kind of G.P.S. vulnerability in particular—a disruption to the system called jamming. By transmitting interference, jammers are able to overwhelm a G.P.S. signal and render a drone’s receiver inoperable. There’s no great mystery about how jamming works, but D.H.S. approached Humphreys because it wanted to test the technology in action: Would he be interested in helping with a demonstration?

    Humphreys accepted the invitation right away, then told the officials that he wanted to focus on a different, more sophisticated threat. In 2011, Iran had made headlines by successfully capturing a C.I.A. drone about a hundred miles from the border with Afghanistan. No one had been sure how the seizure happened: jamming could disorient a drone but not take it over. Humphreys suggested that Iran had succeeded by spoofing the signal—not just interfering with it but actually replacing it with a phantom G.P.S. signal. Tricked into trusting the false system, aircraft could then be commandeered and captured. “Let’s try something more ambitious,” Humphreys told D.H.S. He would see whether he could down a drone.
    G.P.S. is owned by the Department of Defense, operated by the Air Force from a heavily secured room at a base in Colorado, and available for free to anyone in the world. There are twenty-four active G.P.S. satellites, orbiting at twenty thousand kilometres, each one emitting a radio signal that contains a timecode and a description of the satellite’s exact position. By measuring the transmission time of the signal, a G.P.S. receiver determines its distance from the satellite. If the receiver does this simultaneously with the signals of at least four satellites in its line of sight, it can extrapolate its position in three dimensions. During the roughly sixty-seven milliseconds the signal takes to reach us, it grows exceedingly faint. The task of receiving the signal and extracting its informational component is often compared to trying to read using a light bulb in a different city.

    The core technology of this system has remained the same since the first G.P.S. satellite was launched, in 1977, but its uses have proliferated at an astonishing speed. Although the Air Force oversees satellites that transmit signals, once those signals are broadcast into the world, they belong to everyone. Because G.P.S. is a “passive” system—meaning it merely requires a user to receive a signal, not transmit one—it can handle infinite growth. The number of G.P.S. receivers could double tomorrow without affecting the underlying infrastructure at all. From improving maps to measuring the minute movement of tectonic plates, people have devised more ingenious uses for the G.P.S. signal than the system’s original architects could ever have imagined. Humphreys is one such innovator.

    Test day at White Sands was the first time Humphreys’s team had used the spoofer outside the lab: because transmitting a fake G.P.S. signal is illegal, they had never even done a full dress rehearsal. For Humphreys, who made money in college as a magician at children’s parties, it felt like premičring a difficult trick without any practice. Around two A.M., the Hornet appeared, hovering forty feet above the missile range. Humphreys spoke a code word into his handheld radio: “Lightning.” Up on the hill, his students switched on the spoofer. Gradually increasing its power, they directed the bogus signal toward the Hornet, which appeared to hesitate in midair, as if encountering an invisible obstacle. The spoofer was, in essence, whispering lies in the drone’s ear, feeding it inaccurate information about its location. Convinced that it had drifted upward, the drone tried to correct, beginning a steep dive toward the desert floor. Just as it was about to crash into the ground, a manual operator grabbed the controls, pulling the Hornet out of its nosedive. Humphreys’s team let out a celebratory whoop over the radio.

    “We were the only ones clapping,” he told me recently. His hosts looked grim. When Humphreys wasted no time spreading the word about the spoofer’s achievement, they were even more displeased. “I’m told I’ll never be invited back,” he said. “They probably thought I’d do a sleepy presentation in an academic journal. But I was looking to communicate to the world what I thought was an alarming situation.”

    Since the G.P.S. program began, in 1973, its satellite signals have been a source of controversy. It was the brainchild of an Air Force colonel named Bradford Parkinson, who, disillusioned by the indiscriminate air campaigns of the Vietnam War, imagined G.P.S. as a way to improve the accuracy of precision bombing. Parkinson’s research team designed two versions of the G.P.S. signal, one for civilian use and another, with tighter security protocols and more precise readings, for the military. But when the first G.P.S. satellites were launched, it quickly became clear that the civilian signal was more accurate than its architects had intended. And shrewd scientists discovered that although the military signal’s informational content was heavily encrypted, picking up the radio signal itself wasn’t difficult. It was like gleaning information about a sealed letter by looking at the envelope’s postmark.

    In the nineties, the Pentagon intentionally corrupted the civilian signal—a practice known as “selective availability”—hoping to thwart terrorists or other bad actors who might otherwise use the signal to launch precision attacks on U.S. assets. But here, too, users found workarounds, and an order from President Bill Clinton, which took effect in 2000, halted the Pentagon’s program. G.P.S. could now be used to its full potential.
    G.P.S. is now crucially important for reasons that are unrelated to providing geolocation. Because the G.P.S. clocks are synchronized to within nanoseconds, the network’s signals are used to unify time-dependent systems spread over large areas. G.P.S. time helps bounce calls between cellular towers, regulate power flows in electrical grids, and time-stamp financial trades on the major exchanges. If a spoofer were to feed erroneous information that confused the clocks in even a few nodes of these systems, the damage could be widespread: as time errors multiply, communications systems could fail, wrongly apportioned power flows could result in blackouts, and automated trading programs could yank themselves out of the markets, causing crashes. And those are just a few scenarios. We still have not figured out exactly how to safeguard a technology that is so crucial yet so porous.

    In 2001, the Department of Transportation released a report warning that G.P.S. could become a “tempting target” for enemies of the U.S. The joint study was the first official acknowledgment that spoofing was a real and significant threat. Humphreys heard about the report while at Cornell. The worst-case spoofing scenario it described seemed like something he could do himself—in fact, like something he could do better himself.
    Then, as if to underscore the problem, in February, 2016, a software malfunction at the G.P.S. Master Control Station, in Colorado, caused a thirteen-microsecond clock error in some of the satellites. The glitch took hours to fix, during which the infected satellites spread the timing pathogen across the world. The worst catastrophes were avoided (“World dodges G.P.S. bullet,” proclaimed the trade journal GPS World), but computer networks crashed and digital broadcasts (including the BBC’s) were disrupted. Systems engineers couldn’t help but imagine—and fear—that the nightmare they’d barely avoided could soon become real.
    Four years later, in June, 2017, a French oil tanker, the Atria, sailed across the Mediterranean, through the Bosporus strait, and into the Black Sea. As the ship approached the Russian city of Novorossiysk, the captain, Gurvan Le Meur, noticed that the ship’s navigation system appeared to have lost its G.P.S. signal. The signal soon returned, but the position it gave was way off. The Atria was apparently some forty kilometres inland, shipwrecked at the airport in Gelendzhik, a Russian resort town.

    Le Meur radioed nearby vessels, whose captains reported similar malfunctions in their navigation systems: all in all, twenty other ships had been “transported” to the same inland airport. Meanwhile, something similar had been happening in Moscow—this time to Uber customers, not ship captains. Passengers taking short trips discovered that their accounts were charged for drives all the way to one of the city’s airports, or even to locales thousands of miles away.

    The activity attracted the interest of the Center for Advanced Defense Studies (C4ADS), a Washington-based think tank focussed on security issues. Using data from ships, which are required by maritime treaties to continuously broadcast their location, researchers discovered that the spoofing problem was much larger than anyone had realized. ...
    Once they had logged where and when the spoofing incidents occurred, researchers cross-referenced this information with the travel schedule of the Russian President, Vladimir Putin. On a fall afternoon in 2017, six minutes before Putin gave a speech in the coastal town of Bolshoy Kamen, a nearby ship’s G.P.S. coordinates showed it jumping to the airport in Vladivostok. In 2018, when Putin attended the official opening of a bridge across the Kerch Strait, at least twenty-four ships in the area reported their location as Anapa Airport, sixty-five kilometres away. What was going on? It seemed increasingly likely that the President’s security detail was travelling with a portable software-defined spoofer, in the hope of protecting Putin from drone attacks.
    For one of the world’s most prominent politicians, spoofing may not seem like an unreasonable precaution. In August, 2018, a speech by the Venezuelan President, Nicolás Maduro, was interrupted when a pair of drones detonated above one of Caracas’s largest thoroughfares. A few days later, French secret-service agents destroyed a mysterious drone that flew too close to the summer home of the French President, Emmanuel Macron. But for those who’ve fallen prey to spoofing incidents—the befuddled captains at sea, the overcharged passengers in Moscow—it may be difficult to accept that they are merely collateral in attempts to shield a head of state. And the same technology that might seem like a strategic security system in some circumstances contains within it an ominous potential for subterfuge.
    Unlike the noisy surface of the planet, which is dense with radio signals, the upper atmosphere is a quiet zone, where trespassing frequencies stand out; Humphreys could instantly detect the interference in the Black Sea data. Where were the phantom signals coming from? Humphreys knew that, as the space station passed overhead, the spoofed signal created a kind of Doppler effect. It was a simple clue, familiar to most urban dwellers: Imagine driving a car toward a crime scene that you can hear—sirens, megaphones—but not see. You’ll know when you’re getting close, because of the sudden increase in the pitch of these ambient noises. In much the same way, Humphreys could use the changes in the spoofer’s signal to begin to surmise where it was coming from. When he crunched the numbers, he came up with two possible locations: a forest in Romania and somewhere in Syria. He recalculated using data from another space-station recording and this time concluded that the signal was originating from either the German countryside or, again, somewhere in Syria. When Humphreys checked the exact locations, the two sets of Syrian coordinates were identical: the Khmeimim Airbase, a site on the coast associated with Russian military activity in the country. Further calculations narrowed the source of the interference to a transmitter in the base’s northwest quadrant.
    What Humphreys discovered coming from Khmeimim is the most aggressive G.P.S. disruption device to date. “It’s the most potent example of jamming I’ve ever seen,” Humphreys said. “I call it my Jack Ryan moment.” In January, 2018, the airbase was attacked by a swarm of thirteen drones carrying explosives. Somehow, the attack was thwarted; Humphreys posits that a smart jammer repelled the attack with the assistance of anti-aircraft munitions.

    G.P.S. interference will likely be a way for America’s foes to fight in conflicts that they could not win conventionally. The civilian uses of G.P.S. have long outnumbered the military applications, but G.P.S. is still part of just about every American weapons system. “This is us getting our first taste of what it’s like to go up against a serious adversary in electronic warfare,” Humphreys said. “I don’t think Russia has shown all its cards yet.”
    “We’re seeing a general consensus that G.P.S. is wonderful, but we’ve got to cut our habit,” Humphreys told me. The signature precision of the system seems to be giving way to blurry, unnerving chaos. But what might a viable alternative look like? Over all, G.P.S. remains a remarkably robust system. Its major vulnerability is the weakness of the signal itself. One fix would be to rebuild the system with a stronger signal by using satellites much closer to us. But this change would require many more satellites to provide global coverage: seven hundred, compared with the current baseline of twenty-four. “Government control of G.P.S. has been a real benefit to all of humanity, the fact that it rains down free from above, with no contract or subscription fees, but I don’t think the G.P.S. program has the funds to expand to low-Earth orbit,” Humphreys said.

    We may be witnessing the first stage of the death of G.P.S. as we know it. For several years, G.P.S. was the world’s only complete global navigation satellite system. Its only real competition was Russia’s GLONASS, which ranked a distant second. Today, China has implemented the Beidou satellite system, and the European Union has been developing another, called Galileo. But these systems work on similar principles to G.P.S. and have the same vulnerabilities.

    NOTE: NewYorker limits number of free articles before needing a subscription, so bear such in mind before clicking to read full content. I've presented much of the meat of this long article and hopefully not too much to violate copyright concerns. When I've time, I'll look to see if similar information and content is presented on other websites. GDB
    Last edited by G David Bock; 12 Aug 20, 15:29. Reason: spellin' fix

    Leave a comment:

  • G David Bock
    started a topic Sat and Anti-Sat ~ 'Star Wars'

    Sat and Anti-Sat ~ 'Star Wars'

    One big driver of developing Earth orbiting satellites is the aerial(space) recon potential. After Gary Powers and his U-2 were shot down over the USSR by SAMs, the desire to surveil from space, higher ground, gained added incentive. The nature of military and weapon evolution means measure ~counter measure, hence anti-satellite system have been of interest for decades. So, recent twist on this;

    STAR WARS Russia has secretly tested anti-satellite weapon in SPACE, US Space Command says
    RUSSIA has enraged the west by test-firing a weapon designed to knock out other satellites and "threaten the peaceful use of space".

    The Kremlin's military push to use weapons in space puts "US and Allied space assets at serious risk", the US Space Command has warned.

    Researchers said they have "evidence that Russia conducted a non-destructive test of a space-based anti-satellite weapon."

    They said: "On July 15, Russia injected a new object into orbit from Cosmos 2543."

    This is the same Russian satellite which was spotted earlier this year stalking spy satellite USA 245 – which snaps intelligence photos of Earth for the Pentagon.

    On its website, Vladimir Putin's space agency ROSCOSMOS says its satellite was launched on November 25 from the Plesetsk cosmodrome, a sprawling launch site 500 miles north of Moscow, which it described as "part of Russian Space Forces" and "a large testing base".

Latest Topics